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Abstract— Wireless Sensor Networks (WSNs) are susceptible to attacks as they are limited in resources and open in nature. 

Class-imbalance and high-dimensional data are likely to lead to poor performance of conventional intrusion detection systems (IDS). A 

hybrid solution to improving IDS performance in WSNs using deep learning, feature selection, and dimensionality reduction is presented 

in this paper. The model uses Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP) as 

dimensionality reduction techniques, Particle Swarm Optimization (PSO) and Harris Hawks Optimization (HHO) as feature selectors, 

and Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) networks as classifiers. For 

handling class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) is utilized on the NSL-KDD dataset for binary 

and multiclass labels. 

The performances show that the model proposed has accuracy metrics of 99.08% and 98.71% for binary and multiclass classification, 

respectively, which are higher compared to other methods. This hybrid technique effectively identifies different kinds of attacks, such as 

low-frequency R2L and U2R attacks, indicating the strength of advanced machine learning methods in intrusion detection within WSNs. 

 

Index Terms— Wireless Sensor Networks, Intrusion Detection, UMAP, HHO-PSO, CNN- BiLSTM, Dimensionality Reduction, 

Feature Selection, SMOTE. 

 

I. INTRODUCTION 

Wireless Sensor Networks (WSNs) have emerged as 

advance technology that provides the ability for the 

collection, processing, and dissemination of data from sensor 

nodes distributed across a variety of locations. Sensor nodes 

typically contain various sensors and communication 

capabilities to monitor and low-level detect environmental 

situations. WSNs are used in military defence, industrial 

automation, and healthcare. This makes them susceptible to 

attacks as they are open and resource constrained. These 

factors enable remote data collection from hazardous areas 

for decision-making. These attacks risk data integrity, 

confidentiality, and availability, which affect 

organizations[1] [2].  

Decision support systems in many fields rely on machine 

learning which is a growing field in computer science. In 

most cases, working with high-dimensional data is a big 

challenge to deal with. Traditional IDS techniques yield 

suboptimal results owing to high-dimensional characteristics 

and unbalanced class distributions [3] and often struggle to 

balance detection accuracy with resource efficiency, 

particularly when dealing with imbalanced datasets and 

infrequent attacks.  

High-dimensional features and redundant data can reduce 

classifier performance, often leading to more false alarms. 

Many current solutions do not effectively address the need 

for clarity and precision in situations with different types of 

attacks. These issues call for a new method that deals with 

data imbalance, feature relevance, and time-related 

dependencies. This study presents a hybrid deep learning 

framework. It combines feature selection, dimensionality 

reduction, and temporal pattern modeling to enhance 

detection across various attack types on the NSL-KDD 

dataset by using both binary and multiclass labels as shown in 

figure 1.  

The main contributions of the study are: 

• In order to alleviate the class imbalance problem, we 

propose a concept of SMOTE, which improved detection 

ability of the minority class. 

• A dimensionality reduction technique like UMAP and 

PCA to tackle the challenges of high-dimensional and 

noisy data and hybrid strategy metaheuristic feature 

selection methods such as HHO with PSO are utilized as 

wrapper-based approaches to iteratively pinpoint the 

most informative feature subsets for classification 

purposes in intrusion detection systems.  

• The integration of Convolutional Neural Networks 
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(CNNs) and Bidirectional Long Short-Term Memory 

(BiLSTM) networks allows for the effective capture of 

both spatial and temporal features from the optimized 

feature set.  

The remainder of this paper is organized as follows. 

Section 2 reviews the research on intrusion detection, 

focusing on deep learning and other methodologies, and 

identifies their limitations. Section 3 details the proposed 

methods for dimensional reduction and feature selection, 

followed by experimental setup and data description in 

section 4. Experimental results showing the model's success 

in improving the IDS classification accuracy and 

comparative study in Section 5. Section 6 presents a 

summary of the study and outlines potential future 

developments for the system. 

 
Fig. 1. Models compared in this research 

II. RELATED WORK 

In the field of intrusion detection, researchers have utilized 

various dimensional reduction, feature selection techniques, 

to derive a subset of features that can enhance the 

performance of these systems. 

In [4]proposed a new model that combined a CNN with 

LSTM to improve intrusion detection. Furthermore, in [5]the 

developed LSTM-based models achieved impressive 

performance in recognizing various types of attacks by 

exploiting deep learning methods, such as PCA and Mutual 

Information, to minimize data dimensionality and extract 

features.      

Several optimization-based deep learning models have 

also been introduced to improve IDS performance. In 

[6]introduced ILSTM, a new version of the Long Short-Term 

Memory (LSTM) algorithm. This helps detect network 

security threats more accurately. ILSTM uses the Chaotic 

Butterfly Optimization algorithm (CBOA) and Particle 

Swarm Optimization (PSO) to perform better than the 

traditional LSTM and other deep learning models in terms of 

accuracy and precision.  

Similarly, Hybrid frameworks have been developed to 

address these emerging threats. In [7] introduced a defence 

mechanism based on the Harris Hawk optimization approach 

and "deep belief networks (DBN)" for WSNs to improve 

intrusion detection. In [8] proposed a new and efficient 

system, a hybrid framework that containing "Convolutional 

Neural Networks, Long Short-Term Memory Networks" and 

Extra Gradient Boosting to identify novel attacks. In 

[9]proposed HHO-MLP approaches the process of finding 

the optimal parameters, including weights and biases, to 

mitigate intrusion detection issues in network systems.  

This approach was evaluated using various datasets. to 

improve detection capabilities and proposed a new hybrid 

Harris Hawk method. In [10]This algorithm uses a 

feature-selection mechanism to remove repeated features. 

The KNN and DDAE were applied to the original data to 

solve the imbalance. Another innovation came from [11] 

presenting an FL-based SCNN Bi-LSTM model for intrusion 

detection in WSNs with the intention of preserving the 

performance and privacy. This model employs Federated 

Learning (FL) to maintain data privacy while detecting 

intrusions. In [12] introduced a new technique, Genetic 

Sacrificial Whale Optimization (GSWO), which enhances 

IDS by selecting optimal features. The model was executed 

under the GSWO-CatBoost scenario. In [13]introduced an 

intrusion detection system (IDS) for wireless sensor networks 

(WSN) using particle swarm optimization (PSO) and 

ensemble machine learning. This approach combines RF, 

DT, and KNN models to improve detection accuracy. The 

system handles imbalanced datasets using LIME and SHAP. 

III. PROPOSED METHODOLOGY  

This section includes the data preprocessing, 

dimensionality reduction, feature selection, deep learning and 

proposed model implementation and parameters. The 

NSL-KDD dataset includes several types of attack labels and 

comes with a solid set of features, plus it mimics real traffic 

patterns. The training dataset contained 125,973 records, 

whereas the test dataset comprised 22,544 records. The 

training data, which included 41 features distributed into four 

primary groups of intrusion attack types: DoS, Probe, U2R, 

and R2L. The NSL-KDD dataset was of a sufficient size to 

facilitate its comprehensive practical application, yielding 

consistent and comparable results across various studies[2]. 

A. Data Preprocessing  

The dataset was pre-processed to ensure its suitability for 

training and evaluation.  

The preprocessing steps are as follows: 

• To handle the missing data in the dataset, numeric 

features using the median, mode for categorical features.  

• To address imbalanced data, SMOTE is applied to 

oversample the minority classes, ensuring a balanced 

distribution of classes in the training data.  

• Binary classifications are mapped: normal = 0 and attack 

= 1. 

• Multiclass are mapped:  dos =0, normal = 1, probe = 2, 

r2l = 3, and u2r = 4.  
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B. Dimensionality Reduction 

UMAP and PCA are dimensionality reduction techniques 

utilized to reduce dimensionality and eliminate redundant 

features. These both algorithms managed to reduce 

redundancy by 26% by selecting 30 dimensions from the 41 

features, which emphasizes that the features of the data 

structure were held within the data that can be retained. 

UMAP is a nonlinear dimensionality reduction method 

based on manifold theory and fuzzy topology to project data 

in a high-dimensional space to a lower-dimensional space 

while maintaining local and global structures[14].  

Fig.2 and Fig.3 show 2D UMAP projections for binary and 

multiclass data, respectively. The overlap among classes in 

multiclass projections indicates the challenge of 

discriminating between similar attacks. 

The exponential probability distribution of 

high-dimensional points is used to calculate similarity: 

𝑝
𝑖|𝑗=𝑒𝑥𝑝(−

𝑑(𝑥𝑖,𝑥𝑗)−𝜌𝑖

𝜎𝑖
)

  (1) 

where d(𝑥𝑖 , 𝑥𝑗), is the Euclidean distances between the 

points 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗 . 𝜌𝑖  is the distance to the nearest neighbor 

(used to control the density). 𝜎𝑖 is a local scaling factor that 

ensures uniformity across the different densities. The fuzzy 

simplicial set is then constructed by symmetrizing these 

probabilities: 

p𝑖|𝑗 = p𝑖|𝑗 + p𝑗|𝑖 − p𝑖|𝑗 ⋅ p𝑗|𝑖 (2) 

    𝑞{𝑖𝑗} =  (1 +  𝑎 | 𝑦𝑖 − 𝑦𝑗|{2𝑏})
{−1}

   (3) 

Where | 𝑦𝑖 − 𝑦𝑗| is the squared Euclidean distance in a 

low-dimensional space [15]. 

Principal component analysis (PCA) is a technique for 

reducing dimensionality by creating new, uncorrelated 

variables that progressively increase variance and aids in 

minimizing errors during parameter estimation and reduces 

the computational cost by either minimizing the dimensions 

in the attribute space or identifying a subspace that most 

effectively represents the core of the data[5]. Fig. 4 shows the 

explained variance for each principal component. 

Normalization factor to ensure an unbiased estimate of 

covariance. 

𝐶𝑣𝑗𝑘
= (

1

𝑛−1
) ∑ (𝑥𝑖𝑗 − 𝑥𝑗

′)(𝑥𝑖𝑘 − 𝑥𝑘
′ )]𝑛

𝑖=1   (4) 

This equation computes the covariance between two 

features j and k. 

(𝑥𝑖𝑗 − 𝑥𝑗
′)(𝑥𝑖𝑘 − 𝑥𝑘

′ ),’ the product of the deviations from 

the mean, measures the extent to which the two features vary.  

Use of dimension reduction techniques such as PCA or 

UMAP can help reduce extraneous information and convert 

complex high dimension data into something more 

manageable. Not only does this method simplify the 

computational task, it also reveals the most critical patterns in 

the data. By focusing on such a reduced set of dimensions, 

the later feature selection should have greater likelihood of 

being able to find the most important features, and thus the 

effort of optimization will be directed at informative features 

and not at arbitrary noise. 

C. Hybrid Feature Optimization   

The hybrid HHO-PSO optimization method is used to find 

the best feature subset from a reduced feature space. This 

method combines the exploration strengths of Harris Hawks 

Optimization (HHO) with the refinement capabilities of 

Particle Swarm Optimization (PSO) as illustrated in Figure 2.  

 
Fig. 2. Flowchart of hybrid optimization method 

a. Construction of Feasible Solutions 

The initial populations of hawks (HHO agents) and 

particles (PSO agents) are randomly generated binary vectors 

𝐹 ∈ {0,1}{𝑑} , where d is the number of projected features. 

Each agent represents a feature selection mask. 

The fitness of each agent is calculated to balance two 

objectives: classification performance and the compactness 

of the feature subset.   

𝐹 = 𝛼 ⋅ (1 − Accuracy) + 𝛽 ⋅ (
𝑆𝐿

𝐹𝑁
) ×  𝑓𝑏  (5) 

A Random Forest classifier evaluates accuracy for the 

selected subset. Were, F denotes fitness, which is likely to be 

as low as possible, α is the classification error weight, and β is 

the feature-selection penalty weight. Accuracy is the 

classification accuracy, SL is the selected feature count, and 

FN is the total number of features. The fb factor balances the 

feature selection with accuracy.      

b. Harris Hawk Optimization: (Exploration–Exploitation 

Strategy) 

The hawks represent candidate feature subsets, and their 
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positions are updated using exploration or exploitation 

strategies based on the energy level [7][10][16]. 

HHO uses escape energy 𝐸 = 2𝐸0 (1 −
𝑡

𝑇
) , which 

controls the transition from exploration  

(|E| ≥ 1) to exploitation (|E| < 1). where E is the cost of 

evaluating the fitness (i.e., training and validating a 

classifier). 

If ∣E∣≥1, hawks perform exploration using: 

𝑆𝑖
{(𝑡+1)}

= 𝑆𝑟𝑎𝑛𝑑 − 𝑟 ⋅∣ 𝑆𝑟𝑎𝑛𝑑 − 2𝑟 ⋅ 𝑆𝑖
{(𝑡)}

∣  (6) 

If ∣E∣<1, hawks perform exploitation, imitating a hard 

besiege strategy: 

𝑆𝑖
{(𝑡+1)}

= 𝑆𝑟𝑎𝑏𝑏𝑖𝑡 − 𝐸 ⋅∣ 𝑆𝑟𝑎𝑏𝑏𝑖𝑡 − 𝑆𝑖
{(𝑡)}

∣  (7) 

All updates are binarized using thresholding (0.5) to retain 

valid binary feature masks. 

Here: 𝑆𝑟𝑎𝑛𝑑: random hawk solution, 𝑆𝑟𝑎𝑏𝑏𝑖𝑡: best solution 

so far (global best), 

r: random number ∈[0,1]  

c. Particle Swarm Optimization: (Swarm Fine-Tuning) 

PSO simulates the social behavior of bird flocks to solve 

optimization problems. The particles traverse the solution 

space and update their velocities using both local and global 

bests [13]. PSO fine-tunes the candidate solutions by 

updating particle velocities and positions based on both 

individual and collective experiences. At each iteration t, the 

velocity of particle i is updated according to:    

 𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝑔 − 𝑥𝑖

𝑡)  (8) 

Where 𝑣𝑖
𝑡  is the velocity at iteration t, 𝑝𝑖  is the personal 

best, g is the global best, ω is the inertia weight, and c1,c2 are 

cognitive and social learning factors.  

The optimization process happens in two stages: first, 

HHO performs global exploration. Then, PSO fine-tunes the 

best solutions to improve both accuracy and compactness. A 

Random Forest classifier assesses the feature masks, and the 

mask with the lowest fitness score is selected as the final 

feature subset. Figure 3 shows the hyperparameters used in 

the HHO-PSO algorithm to select the number of features for 

classification. 

 

Fig. 3. Parameters used in HHO-PSO Feature Selection 

D. Hybrid CNN + BiLSTM Model 

To finalize classification, we integrated a Convolutional 

Neural Network (CNN) with a Bidirectional Long 

Short-Term Memory (BiLSTM) network prediction model as 

shown in figure 4. CNN extracts spatial features from the 

input feature vector using convolutional layers. 

BiLSTM captures temporal dependencies in both the 

forward and backward directions, which is crucial for 

identifying attack patterns that may occur in sequences. The 

hybrid model improved the performance for intrusion 

detection in wireless sensor networks (WSNs). The 

parameters used to configure the CNN-BiLSTM architecture 

are listed in figure 5. 

IV. EXPERIMENTAL SETUP AND DATA 

DESCRIPTION  

A. Experimental Setup 

The model was developed using the Jupyter Notebook 

with Python 3.11, using the Scikit-learn, Seaborn, Matplotlib, 

NumPy, Keras, and Pandas libraries. The computing 

environment ran on Windows 11 Professional and used a 

500GB SSD, 16GB RAM, and an Intel Core i7-8665U CPU 

running at 1.90GHz (two cores and four logical processors). 

B. Data Description  

The NSL-KDD dataset was segmented in a Jupyter 

notebook setting into a 20% testing set, while 80% of the 

training set maintained the class distribution. SMOTE is an 

oversampling method that balances the training data classes. 

The NSL-KDD dataset has 41 features, three of which are 

categorical: protocol_type, service, and flag. One-hot 

encoding was used to make sure these features would work 

with learning models. This process brings the 41-dimensional 

features to total 122 after encoding. While this increase 

preserves categorical semantics creates a higher 

computational burden. To improve efficiency, reduce 

overfitting and scalability, dimensionality reduction was used 

before metaheuristic feature selection.     

 
Fig. 4. Structure of CNN-BiLSTM [17]. 

 
Fig. 5. CNN–BiLSTM Configuration Parameters. 

V. RESULT ANALYSIS AND DISCUSSION  

A. Experimental results 

In this study, the results obtained from binary and 

multi-class classification with five categories were used. The 
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performance of each model was determined using the 

accuracy, precision, recall, F1-score, FPR, FNR, FDR of the 

evaluation matrix obtained based on the parameters TP, TN, 

FN, FP which are used to measure the actual performance of 

the model. Table 1 and Table 2 presents the performance of 

several feature optimization and dimensionality reduction 

techniques applied to the binary and multiclass classification 

task. Additionally, the number of selected features for each 

approach is reported. PCA-HHO+PSO achieves the highest 

performance across all metrics, with an accuracy of 99.08%, 

FPR of 0.0088 and accuracy of 98.71%, FPR of 0.0031 in 

binary and multiclass classification respectively. Figure 7 

presents the confusion matrix for binary and multiclass 

classification.  

To evaluate multiclass classification on the NSL-KDD 

dataset, ROC curves were plotted for each class across 

UMAP–HHO+PSO–CNN+BiLSTM and PSO–HHO+PSO–

CNN+BiLSTM configurations (Figure 8). The curves 

represent dos, normal, probe, r2l, and u2r classes, with AUC 

scores indicating model performance. In the UMAP 

configuration, the model achieved perfect classification 

(AUC = 1.00) for dos, normal, probe, and r2l classes, but 

performed poorly for u2r (AUC = 0.98). The PSO 

configuration maintained high AUC scores for major classes 

while improving u2r detection (AUC = 1.00), suggesting 

PSO-first feature selection provides more discriminative 

features before hybrid optimization and deep learning stages. 

This confirms PSO's advantage as an initial feature selector 

and shows that strategic ordering of selection techniques 

significantly impacts classification effectiveness in intrusion 

detection systems. Figure 9 illustrate the classification report 

for the multiclass classification for UMAP and PCA.  

B. Error Rate Comparison 

Figure 10 compares False Positive Rate (FPR), False 

Negative Rate (FNR), and False Discovery Rate (FDR) 

across six models for binary and multiclass classification on 

NSL-KDD dataset. UMAP–HHO+PSO and PCA–

HHO+PSO models show lowest error rates, indicating better 

detection reliability. PSO demonstrates lower FNR and FDR 

than ACO and HHO+PSO. HHO+PSO's high FNR and FDR 

values show hybrid optimization's sensitivity to feature 

representation. Dimensionality reduction through UMAP and 

PCA with hybrid optimization reduces false alarms and 

missed detections, highlighting the importance of feature 

selection with dimensionality reduction for improved model 

performance. 

C. Discussion 

These results were compared with those of previous 

studies to enhance our understanding of the experimental 

findings (Table 3). This comparison of various algorithms 

serves as a reference point. These findings indicate that 

different intrusion-detection systems can yield significantly 

varied results, complicating  

the development of a universally optimal model. Our 

proposed models, UMAP-HHO+PCA-CNN+BiLSTM and 

PCA-HHO+PCO-CNN+BiLSTM, demonstrate superior 

performance compared to current leading methods in both 

binary and multiclass classification tasks. The 

PCA-HHO+PCO-CNN+BiLSTM model achieves the 

highest accuracy rates (99.08% for binary and 98.71% for 

multiclass), along with top precision, recall, and F1-score, 

outperforming models like [18], [6], [10], and the [7] hybrid. 

Although DBN-HHO and DNN exhibit strong binary 

classification capabilities, our models provide better results 

with balanced precision-recall and enhanced F1-scores. This 

advancement is due to the integration of feature optimization 

(HHO+PSO) and dimensionality reduction techniques (PCA, 

UMAP), which boost performance while minimizing feature 

dimensionality for more efficient models. 

Dimensional Reduction using UMAP and PCA effectively 

reduced redundant features by more than 26% without 

sacrificing model accuracy (over 95% accuracy achieved). 

HHO+PSO could optimize the selection process of features 

out of a potential of 30 from the selected UMAP and PCA. 

The detection of infrequent attacks, such as R2L and U2R, 

was improved by applying SMOTE to the imbalanced 

datasets. The CNN's recall for DoS and Probe attacks is 

owing to its proficiency in capturing spatial relationships. 

VI. CONCLUSION AND FUTURE WORK 

The paper proposes an innovative hybrid model based on 

deep learning, feature selection, and dimensionality reduction 

to improve intrusion detection in Wireless Sensor Networks 

(WSNs). The model is accompanied by a deep learning 

classifier constructed using Convolutional Neural Networks 

(CNN) and Bidirectional Long Short-Term Memory 

(BiLSTM) networks.   

The hybrid feature selection method that employs Harris 

Hawks Optimization (HHO) and Particle Swarm 

Optimization (PSO), along with Uniform Manifold 

Approximation and Projection (UMAP) and Principal 

Component Analysis (PCA) for dimensionality reduction. 

Key findings are: 

1. The dimensionality reduction methods (UMAP and 

PCA) were successful in reducing the duplicate features 

by 26% without compromising the model performance. 

2. The hybrid HHO-PSO feature selection method 

enhanced the selection of informative features. 

3. The combination of CNN-BiLSTM enhanced the 

detection of frequent as well as rare attacks such as DoS, 

Probe, R2L, and U2R. 

4. The proposed model worked better in terms of precision, 

accuracy, recall, and F1-score with respect to the current 

methods. 
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Table 3: Bianry classification comparative analysis of various feature optimization techniques (%). 

 
ACO (All 

Features) 

PSO (All 

Features) 

HHO (All 

Features) 

HHO+PSO 

(All Features) 

UMAP-HHO+PSO 

(30 component) 

PCA-HHO+PSO 

(30 component) 

Seleted Features 4 59 62 54 22 25 

Accuracy 86.41 98.23 98.40 96.51 98.46 99.08 

Precision 93.70 97.95 98.64 97.97 98.67 99.12 

Recall 76.92 98.38 98.02 94.70 98.13 98.97 

F1 score 84.48 98.16 98.33 96.31 98.40 99.05 

FPR 0.0480 0.0125 0.0177 0.0182 0.0187 0.0088 

Table 4: Multiclass classification comparative analysis various feature optimization techniques (%). 

 
ACO-(All 

Features) 

PSO (All 

Features) 

HHO All 

Features) 

HHO+PSO 

(All Features) 

UMAP-HHO+PS

O (30 component) 

PCA-HHO+PSO 

(30 component) 

Seleted Features 2 46 74 16 17 12 

Accuracy 73.40 98.07 98.01 79.82 97.37 98.71 

Precision 48.51 89.71 90.45 54.24 80.25 90.16 

Recall 56.94 92.90 90.98 78.42 86.52 94.13 

F1 score 48.81 90.31 89.51 56.42 82.70 91.88 

FPR 0.0662 0.0046 0.0048 0.0411 0.0064 0.0031 

 

 

 

 

 

Fig. 6. Performance score comparison for Binary and 

Multiclass classification.
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Fig. 7. Binary and Multiclass classification confusion 

matrix. 

 
Fig. 8. ROC Curve of UMAP-HHO+PSO-CNN-BiLSTM 

and PSO HHO+PSO-CNN-BiLSTM Multiclass 

classification 

 

 

(a) UMAP-HHO+PCA-CNN+BiLSTM (b) 

PCA-HHO+PSO-CNN+BiLSTM 

Fig. 9. Classification Report for Binary and Multiclass 

Classication 

 

 
(a) Binary classification (b) Multiclass Classification 

Fig. 10. Compares FPR, FNR, and FDR Across Six 

Models. 

Table 5: Comparative study 

Study Model Accuracy Precision Recall F1-Score 

Binary MC Binary MC Binary MC Binary MC 

[18] CNN-LSTM-SA 89.38 93.72 87.12 91.84 95.63 95.02 91.17 93.26 

[6] ILSTM 91.31 93.09 94.76 95.86 84.93 88.88 89.36 91.72 

[10] DNN 93.31 86.79 92.88 89.46 - - 94.21 87.56 

[7] DBN-HHO 98.5 97.9 97.6 98.3 
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Study Model Accuracy Precision Recall F1-Score 

Binary MC Binary MC Binary MC Binary MC 

Our 

Model 

UMAP-HHO+PC

A-CNN+BiLSTM 
98.46 97.37 98.67 80.25 98.13 86.52 98.40 82.70 

PCA-HHO+PCO-

CNN+BiLSTM 
99.08 98.71 99.12 90.16 98.97 94.13 99.05 91.88 

 

The findings forecast the potential that the usage of 

state-of-the-art machine learning methods holds to develop 

strong and efficient Intrusion Detection Systems for WSNs. 

The research findings supplement the current effort to 

improve security in environments that are constrained with 

resources. 

Future enhancements of this framework can be explored in 

several directions, such as 1. Implement a framework for 

real-time intrusion detection on energy-limited sensor nodes 

using model compression and lightweight deep-learning 

models. 2. Adaptive feature selection mechanisms change 

feature subsets depending on the network conditions or 

features of attacks. 3. This needs to be examined using a 

variety of datasets (such as UNSW-NB15 and CICIDS2017) 

to ensure that its features are stable and move in various 

network contexts. 
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