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Abstract— Wireless Sensor Networks (WSNs) are susceptible to attacks as they are limited in resources and open in nature.
Class-imbalance and high-dimensional data are likely to lead to poor performance of conventional intrusion detection systems (IDS). A
hybrid solution to improving IDS performance in WSNs using deep learning, feature selection, and dimensionality reduction is presented
in this paper. The model uses Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP) as
dimensionality reduction techniques, Particle Swarm Optimization (PSO) and Harris Hawks Optimization (HHO) as feature selectors,
and Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) networks as classifiers. For
handling class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) is utilized on the NSL-KDD dataset for binary
and multiclass labels.

The performances show that the model proposed has accuracy metrics of 99.08% and 98.71% for binary and multiclass classification,
respectively, which are higher compared to other methods. This hybrid technique effectively identifies different kinds of attacks, such as
low-frequency R2L and U2R attacks, indicating the strength of advanced machine learning methods in intrusion detection within WSNs.

Index Terms— Wireless Sensor Networks, Intrusion Detection, UMAP, HHO-PSO, CNN- BiLSTM, Dimensionality Reduction,
Feature Selection, SMOTE.

High-dimensional features and redundant data can reduce

I. INTRODUCTION classifier performance, often leading to more false alarms.

Wireless Sensor Networks (WSNs) have emerged as Many gurrent solut_io_ns c_io n_ot effectivgly a_ddress the need
advance technology that provides the ability for the for clarity and precision in situations with different types_of
collection, processing, and dissemination of data from sensor ~ @ttacks. These issues call for a new method that deals with
nodes distributed across a variety of locations. Sensor nodes ~data imbalance, feature relevance, and time-related
typically contain various sensors and communication ~dependencies. This study presents a hybrid deep learning
capabilities to monitor and low-level detect environmental ~ framework. It combines feature selection, dimensionality
situations. WSNs are used in military defence, industrial ~ reduction, and temporal pattern modeling to enhance
automation, and healthcare. This makes them susceptible to ~ detection across various attack types on the NSL-KDD
attacks as they are open and resource constrained. These dataset by using both binary and multiclass labels as shown in

factors enable remote data collection from hazardous areas  figure 1.

for decision-making. These attacks risk data integrity, The main contributions of the study are:

confidentiality, and availability, which affect e In order to alleviate the class imbalance problem, we
organizations[1] [2]. propose a concept of SMOTE, which improved detection

Decision support systems in many fields rely on machine ability of the minority class.

learning which is a growing field in computer science. In ¢ A dimensionality reduction technique like UMAP and
most cases, working with high-dimensional data is a big PCA to tackle the challenges of high-dimensional and
challenge to deal with. Traditional 1DS techniques yield noisy data and hybrid strategy metaheuristic feature
suboptimal results owing to high-dimensional characteristics selection methods such as HHO with PSO are utilized as
and unbalanced class distributions [3] and often struggle to wrapper-based approaches to iteratively pinpoint the
balance detection accuracy with resource efficiency, most informative feature subsets for classification
particularly when dealing with imbalanced datasets and purposes in intrusion detection systems.

infrequent attacks. e The integration of Convolutional Neural Networks
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(CNNs) and Bidirectional Long Short-Term Memory
(BiLSTM) networks allows for the effective capture of
both spatial and temporal features from the optimized
feature set.

The remainder of this paper is organized as follows.
Section 2 reviews the research on intrusion detection,
focusing on deep learning and other methodologies, and
identifies their limitations. Section 3 details the proposed
methods for dimensional reduction and feature selection,
followed by experimental setup and data description in
section 4. Experimental results showing the model's success
in improving the IDS classification accuracy and
comparative study in Section 5. Section 6 presents a
summary of the study and outlines potential future
developments for the system.

SMOTE

[ HHO-PSO-CNN-BILSTM ] [PCA—HHO*PSO—CNN*BiLSTM] [ UMAP- HHO-PSO-CNN-BILSTM ]

.

Binary / Multiclass

Result Comparison

Fig. 1. Models compared in this research

Il. RELATED WORK

In the field of intrusion detection, researchers have utilized
various dimensional reduction, feature selection techniques,
to derive a subset of features that can enhance the
performance of these systems.

In [4]proposed a new model that combined a CNN with
LSTM to improve intrusion detection. Furthermore, in [5]the
developed LSTM-based models achieved impressive
performance in recognizing various types of attacks by
exploiting deep learning methods, such as PCA and Mutual
Information, to minimize data dimensionality and extract
features.

Several optimization-based deep learning models have
also been introduced to improve IDS performance. In
[6]introduced ILSTM, a new version of the Long Short-Term
Memory (LSTM) algorithm. This helps detect network
security threats more accurately. ILSTM uses the Chaotic
Butterfly Optimization algorithm (CBOA) and Particle
Swarm Optimization (PSO) to perform better than the
traditional LSTM and other deep learning models in terms of
accuracy and precision.

Similarly, Hybrid frameworks have been developed to
address these emerging threats. In [7] introduced a defence
mechanism based on the Harris Hawk optimization approach
and "deep belief networks (DBN)" for WSNs to improve

intrusion detection. In [8] proposed a new and efficient
system, a hybrid framework that containing "Convolutional
Neural Networks, Long Short-Term Memory Networks" and
Extra Gradient Boosting to identify novel attacks. In
[9]proposed HHO-MLP approaches the process of finding
the optimal parameters, including weights and biases, to
mitigate intrusion detection issues in network systems.

This approach was evaluated using various datasets. to
improve detection capabilities and proposed a new hybrid
Harris Hawk method. In [10]This algorithm uses a
feature-selection mechanism to remove repeated features.
The KNN and DDAE were applied to the original data to
solve the imbalance. Another innovation came from [11]
presenting an FL-based SCNN Bi-LSTM model for intrusion
detection in WSNs with the intention of preserving the
performance and privacy. This model employs Federated
Learning (FL) to maintain data privacy while detecting
intrusions. In [12] introduced a new technique, Genetic
Sacrificial Whale Optimization (GSWO), which enhances
IDS by selecting optimal features. The model was executed
under the GSWO-CatBoost scenario. In [13]introduced an
intrusion detection system (IDS) for wireless sensor networks
(WSN) wusing particle swarm optimization (PSO) and
ensemble machine learning. This approach combines RF,
DT, and KNN models to improve detection accuracy. The
system handles imbalanced datasets using LIME and SHAP.

I11. PROPOSED METHODOLOGY

This section includes the data preprocessing,
dimensionality reduction, feature selection, deep learning and
proposed model implementation and parameters. The
NSL-KDD dataset includes several types of attack labels and
comes with a solid set of features, plus it mimics real traffic
patterns. The training dataset contained 125,973 records,
whereas the test dataset comprised 22,544 records. The
training data, which included 41 features distributed into four
primary groups of intrusion attack types: DoS, Probe, U2R,
and R2L. The NSL-KDD dataset was of a sufficient size to
facilitate its comprehensive practical application, yielding
consistent and comparable results across various studies[2].

A. Data Preprocessing

The dataset was pre-processed to ensure its suitability for
training and evaluation.

The preprocessing steps are as follows:

e To handle the missing data in the dataset, numeric
features using the median, mode for categorical features.

e To address imbalanced data, SMOTE is applied to
oversample the minority classes, ensuring a balanced
distribution of classes in the training data.

¢ Binary classifications are mapped: normal = 0 and attack
=1

e Multiclass are mapped: dos =0, normal = 1, probe = 2,
r2l = 3, and u2r = 4.
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B. Dimensionality Reduction

UMAP and PCA are dimensionality reduction techniques
utilized to reduce dimensionality and eliminate redundant
features. These both algorithms managed to reduce
redundancy by 26% by selecting 30 dimensions from the 41
features, which emphasizes that the features of the data
structure were held within the data that can be retained.

UMAP is a nonlinear dimensionality reduction method
based on manifold theory and fuzzy topology to project data
in a high-dimensional space to a lower-dimensional space
while maintaining local and global structures[14].

Fig.2 and Fig.3 show 2D UMAP projections for binary and
multiclass data, respectively. The overlap among classes in

multiclass  projections indicates the challenge of
discriminating between similar attacks.
The exponential probability  distribution of

high-dimensional points is used to calculate similarity:
pi|i=exp<__d(xi"‘j)_pi> @)

where d(x;,x;), is the Euclidean distances between the
points x; and x;. p; is the distance to the nearest neighbor
(used to control the density). o; is a local scaling factor that
ensures uniformity across the different densities. The fuzzy
simplicial set is then constructed by symmetrizing these
probabilities:

Pijj = Pijj + Pjii — Pajj ~ Pjii )

aip= (1 + aly — yjl (3)

Where | y; — y;| is the squared Euclidean distance in a
low-dimensional space [15].

Principal component analysis (PCA) is a technique for
reducing dimensionality by creating new, uncorrelated
variables that progressively increase variance and aids in
minimizing errors during parameter estimation and reduces
the computational cost by either minimizing the dimensions
in the attribute space or identifying a subspace that most
effectively represents the core of the data[5]. Fig. 4 shows the
explained variance for each principal component.
Normalization factor to ensure an unbiased estimate of

covariance.
Cv]-k = (ﬁ) ?:1(951'1' - xj’)(xik —x)] 4
This equation computes the covariance between two
features j and k.
(x; i~ xj’)(xik —x3,),” the product of the deviations from
the mean, measures the extent to which the two features vary.
Use of dimension reduction techniques such as PCA or
UMAP can help reduce extraneous information and convert
complex high dimension data into something more
manageable. Not only does this method simplify the
computational task, it also reveals the most critical patterns in
the data. By focusing on such a reduced set of dimensions,
the later feature selection should have greater likelihood of
being able to find the most important features, and thus the

{Zb}){_l}

effort of optimization will be directed at informative features
and not at arbitrary noise.

C. Hybrid Feature Optimization

The hybrid HHO-PSO optimization method is used to find
the best feature subset from a reduced feature space. This
method combines the exploration strengths of Harris Hawks
Optimization (HHO) with the refinement capabilities of
Particle Swarm Optimization (PSO) as illustrated in Figure 2.

Dimensional
Reduction

fitness

funtion(selected_features) |«

If len(ulet(edjfeamres) 0

'
Initialize HHO,PSO parameters
nity (invalid solution)

hawks, fitness_hho, rabhit, particles,
velocities

else
evalvate RF classifiers X_train with
selected features

for ttill
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Update velocity,
if 1E| >=1
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around random
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o e
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Fig. 2. Flowchart of hybrid optimization method

rabbit

a. Construction of Feasible Solutions

The initial populations of hawks (HHO agents) and
particles (PSO agents) are randomly generated binary vectors
F € {0,1}{}  where d is the number of projected features.
Each agent represents a feature selection mask.

The fitness of each agent is calculated to balance two
objectives: classification performance and the compactness
of the feature subset.

=a-(1—Accuracy) + - ( ) X fb (5)
A Random Forest classifier evaluates accuracy for the
selected subset. Were, F denotes fitness, which is likely to be
as low as possible, « is the classification error weight, and g is
the feature-selection penalty weight. Accuracy is the
classification accuracy, SL is the selected feature count, and
FN is the total number of features. The fb factor balances the
feature selection with accuracy.

b. Harris Hawk Optimization: (Exploration—Exploitation
Strategy)

The hawks represent candidate feature subsets, and their
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positions are updated using exploration or exploitation
strategies based on the energy level [7][10][16].

HHO uses escape energy E = 2E, (1—%) , Which

controls the transition from exploration

(IE| = 1) to exploitation (|E| < 1). where E is the cost of
evaluating the fitness (i.e., training and validating a
classifier).

If |[EI>1, hawks perform exploration using:

SL'{(HD} = Srana =7 *| Srana — 21 Si{(t)} | (6)

If |EI<1, hawks perform exploitation, imitating a hard

besiege strategy:

Si{(t+1)} = S‘r‘abbit —E- S‘rabbit - Sl{ (7)

All updates are binarized using thresholding (0.5) to retain
valid binary feature masks.

Here: S, 4nq: random hawk solution, S, pi:: best solution
so far (global best),

r: random number €[0,1]

®} |

c. Particle Swarm Optimization: (Swarm Fine-Tuning)

PSO simulates the social behavior of bird flocks to solve
optimization problems. The particles traverse the solution
space and update their velocities using both local and global
bests [13]. PSO fine-tunes the candidate solutions by
updating particle velocities and positions based on both
individual and collective experiences. At each iteration t, the
velocity of particle i is updated according to:

vt = wvf + e (p — xf) + cara(g — x{) (@)

Where vf is the velocity at iteration t, p; is the personal
best, g is the global best, o is the inertia weight, and c1,c2 are
cognitive and social learning factors.

The optimization process happens in two stages: first,
HHO performs global exploration. Then, PSO fine-tunes the
best solutions to improve both accuracy and compactness. A
Random Forest classifier assesses the feature masks, and the
mask with the lowest fitness score is selected as the final
feature subset. Figure 3 shows the hyperparameters used in
the HHO-PSO algorithm to select the number of features for
classification.

Parameter
hawks

Description
Number of search agents m HHO. Each hawk represents a candidate feature subset.

alpha Exploration vs. exploitation trade-off in HHO. 0.80
particles Number of candidate solutions (particles) in PSO 20
beta Velocity adjustment factor m PSO. 0.2
max_iter Number of tterations for HHO-PSO to refine feature selection. 5

Fig. 3. Parameters used in HHO-PSO Feature Selection

D. Hybrid CNN + BiLSTM Model

To finalize classification, we integrated a Convolutional
Neural Network (CNN) with a Bidirectional Long
Short-Term Memory (BiLSTM) network prediction model as
shown in figure 4. CNN extracts spatial features from the
input feature vector using convolutional layers.

BiLSTM captures temporal dependencies in both the
forward and backward directions, which is crucial for
identifying attack patterns that may occur in sequences. The

hybrid model improved the performance for intrusion
detection in wireless sensor networks (WSNs). The
parameters used to configure the CNN-BiLSTM architecture
are listed in figure 5.

IV. EXPERIMENTAL SETUP AND DATA
DESCRIPTION

A. Experimental Setup

The model was developed using the Jupyter Notebook
with Python 3.11, using the Scikit-learn, Seaborn, Matplotlib,
NumPy, Keras, and Pandas libraries. The computing
environment ran on Windows 11 Professional and used a
500GB SSD, 16GB RAM, and an Intel Core i7-8665U CPU
running at 1.90GHz (two cores and four logical processors).

B. Data Description

The NSL-KDD dataset was segmented in a Jupyter
notebook setting into a 20% testing set, while 80% of the
training set maintained the class distribution. SMOTE is an
oversampling method that balances the training data classes.
The NSL-KDD dataset has 41 features, three of which are
categorical: protocol_type, service, and flag. One-hot
encoding was used to make sure these features would work
with learning models. This process brings the 41-dimensional
features to total 122 after encoding. While this increase
preserves categorical semantics creates a higher
computational burden. To improve efficiency, reduce
overfitting and scalability, dimensionality reduction was used
before metaheuristic feature selection.

Tnput | = o = = - -+ |FC | Outpur
Convelution  Pooling Porward  Backwards
layer layer LSTM  LSTM
Input layer CNN layer BIiLSTM layer FC layer Output layer
Fig. 4. Structure of CNN-BILSTM [17].
Parameter Binary Classi Multiclass Classt

Loss Function Huber Loss Categorical Crossentropy

Conv1D Filters: 32,64 Kernel Size: 2, Filters: 64, Kemel Size: 3,
Activation: ReLU, Regularization: Activation: ReLU, Regularization:
L2 (0.001) 1.2 (0.001)

MaxPooling1D Pool Size: 2 Pool Size: 2

Bidirectional LSTM Layer 1: Units: 64, Return. Layer 1: Units: 128, Return
Sequences: True, Regularization: L2 | Sequences: True, Regularization:
(0.001) 1.2 (0.001)
Layer 2: Units: 32, Return Layer 2: Units: 64, Return
Sequences: False, Regularization: L2 | Sequences: False, Regularization:
0.001) 12 (0.001)

Epsilon 1e-08 1e-08

Optimizer Adam Adam

Learning Rate 0.002 0.002

Epochs 50 50

Dropout 02 02

Activation Sigmoid Softmax

Fig. 5. CNN-BILSTM Configuration Parameters.

V. RESULT ANALYSIS AND DISCUSSION

A. Experimental results

In this study, the results obtained from binary and
multi-class classification with five categories were used. The
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performance of each model was determined using the
accuracy, precision, recall, F1-score, FPR, FNR, FDR of the
evaluation matrix obtained based on the parameters TP, TN,
FN, FP which are used to measure the actual performance of
the model. Table 1 and Table 2 presents the performance of
several feature optimization and dimensionality reduction
techniques applied to the binary and multiclass classification
task. Additionally, the number of selected features for each
approach is reported. PCA-HHO+PSO achieves the highest
performance across all metrics, with an accuracy of 99.08%,
FPR of 0.0088 and accuracy of 98.71%, FPR of 0.0031 in
binary and multiclass classification respectively. Figure 7
presents the confusion matrix for binary and multiclass
classification.

To evaluate multiclass classification on the NSL-KDD
dataset, ROC curves were plotted for each class across
UMAP-HHO+PSO-CNN+BiLSTM and PSO-HHO+PSO-
CNN+BIiLSTM configurations (Figure 8). The curves
represent dos, normal, probe, r2l, and u2r classes, with AUC
scores indicating model performance. In the UMAP
configuration, the model achieved perfect classification
(AUC = 1.00) for dos, normal, probe, and r2l classes, but
performed poorly for u2r (AUC 0.98). The PSO
configuration maintained high AUC scores for major classes
while improving u2r detection (AUC = 1.00), suggesting
PSO-first feature selection provides more discriminative
features before hybrid optimization and deep learning stages.
This confirms PSQO's advantage as an initial feature selector
and shows that strategic ordering of selection techniques
significantly impacts classification effectiveness in intrusion
detection systems. Figure 9 illustrate the classification report
for the multiclass classification for UMAP and PCA.

B. Error Rate Comparison

Figure 10 compares False Positive Rate (FPR), False
Negative Rate (FNR), and False Discovery Rate (FDR)
across six models for binary and multiclass classification on
NSL-KDD  dataset. UMAP-HHO+PSO and PCA-
HHO+PSO models show lowest error rates, indicating better
detection reliability. PSO demonstrates lower FNR and FDR
than ACO and HHO+PSO. HHO+PSO's high FNR and FDR
values show hybrid optimization's sensitivity to feature
representation. Dimensionality reduction through UMAP and
PCA with hybrid optimization reduces false alarms and
missed detections, highlighting the importance of feature
selection with dimensionality reduction for improved model
performance.

C. Discussion

These results were compared with those of previous
studies to enhance our understanding of the experimental
findings (Table 3). This comparison of various algorithms
serves as a reference point. These findings indicate that
different intrusion-detection systems can yield significantly

varied results, complicating

the development of a universally optimal model. Our
proposed models, UMAP-HHO+PCA-CNN+BIiLSTM and
PCA-HHO+PCO-CNN+BIiLSTM, demonstrate superior
performance compared to current leading methods in both
binary and multiclass classification  tasks. The
PCA-HHO+PCO-CNN+BIiLSTM model achieves the
highest accuracy rates (99.08% for binary and 98.71% for
multiclass), along with top precision, recall, and F1-score,
outperforming models like [18], [6], [10], and the [7] hybrid.
Although DBN-HHO and DNN exhibit strong binary
classification capabilities, our models provide better results
with balanced precision-recall and enhanced F1-scores. This
advancement is due to the integration of feature optimization
(HHO+PSO) and dimensionality reduction techniques (PCA,
UMAP), which boost performance while minimizing feature
dimensionality for more efficient models.

Dimensional Reduction using UMAP and PCA effectively
reduced redundant features by more than 26% without
sacrificing model accuracy (over 95% accuracy achieved).
HHO+PSO could optimize the selection process of features
out of a potential of 30 from the selected UMAP and PCA.
The detection of infrequent attacks, such as R2L and U2R,
was improved by applying SMOTE to the imbalanced
datasets. The CNN's recall for DoS and Probe attacks is
owing to its proficiency in capturing spatial relationships.

VI. CONCLUSION AND FUTURE WORK

The paper proposes an innovative hybrid model based on
deep learning, feature selection, and dimensionality reduction
to improve intrusion detection in Wireless Sensor Networks
(WSNs). The model is accompanied by a deep learning
classifier constructed using Convolutional Neural Networks
(CNN) and Bidirectional Long Short-Term Memory
(BIiLSTM) networks.

The hybrid feature selection method that employs Harris
Hawks Optimization (HHO) and Particle Swarm
Optimization (PSO), along with Uniform Manifold
Approximation and Projection (UMAP) and Principal
Component Analysis (PCA) for dimensionality reduction.

Key findings are:

1. The dimensionality reduction methods (UMAP and
PCA) were successful in reducing the duplicate features
by 26% without compromising the model performance.

2. The hybrid HHO-PSO feature selection method
enhanced the selection of informative features.

3. The combination of CNN-BIiLSTM enhanced the
detection of frequent as well as rare attacks such as DoS,
Probe, R2L, and U2R.

4. The proposed model worked better in terms of precision,

accuracy, recall, and F1-score with respect to the current

methods.
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Table 3: Bianry classification comparative analysis of various feature optimization techniques (%).

ACO (All |PSO (All |HHO (All |HHO+PSO UMAP-HHO+PSO |PCA-HHO+PSO
Features) |Features) |Features) |(All Features) |(30 component) (30 component)

Seleted Features |4 59 62 54 22 25

Accuracy 86.41 98.23 98.40 96.51 98.46 99.08

Precision 93.70 97.95 98.64 97.97 98.67 99.12

Recall 76.92 98.38 98.02 94.70 98.13 98.97

F1 score 84.48 98.16 98.33 96.31 98.40 99.05

FPR 0.0480 0.0125 0.0177 0.0182 0.0187 0.0088

Table 4: Multiclass classification comparative analysis various feature optimization techniques (%).

ACO-(All | PSO (Al HHO All | HHO+PSO UMAP-HHO+PS | PCA-HHO+PSO
Features) | Features) | Features) | (All Features) | O (30 component) | (30 component)
Seleted Features | 2 46 74 16 17 12
Accuracy 73.40 98.07 98.01 79.82 97.37 98.71
Precision 48.51 89.71 90.45 54.24 80.25 90.16
Recall 56.94 92.90 90.98 78.42 86.52 94.13
F1 score 48.81 90.31 89.51 56.42 82.70 91.88
FPR 0.0662 0.0046 0.0048 0.0411 0.0064 0.0031
Model Accuracy Comparisan for Binary Classification 100 Performance Score Comparison for Binary Classification
e = 1110750
BN PCA-HHO+PSO s PCA-HHO+PSO
o0 98 -
g 40 é 7
0 92 4
0_0‘5 e o Mi‘!?el 2 w0 e Frecision PET’fOWﬂBnCeR;;taFIi‘CS roseore
Model Accuracy Comparison for Multiclass Classification 100 Performance Score Comparison for Multiclass Classification
B [ = HHO+PSO
EEN UMAP-HHO+PSO BN UMAP-HHO+PSO
F 60 § 80 4
o 0 Precision Recall Fl-score

Model Performance Metrics

Fig. 6. Performance score comparison for Binary and
Multiclass classification.
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UMAP-HHO#PSO-CNN+BILSTM PCA-HHO+PSO-CNN+BILSTM

Classification Reportof PCA-HHO+PSO-CNN+BiLSTM:

precision recall fl-score support
dos 1.e00 1.88 1.00 10677
normal 1.e00 @.98 0.99 15411
probe 9.98 8.99 0.98 2816
r2l 9.76 .98 8.86 750
u2r 9.78 8.76 8.77 50
accuracy 0.99 29704
U0 PO DL macro avg 9.%0 @.94 0.92 29704
°n ‘ B weighted avg 9.99 9.99 @.99 29784
. PRI s 1 1 o
uoow [am e . - B 5000 Overall F1 Metrics:
I Macro-F1 : 9.9188
Micro-F1 1 8.9871

Weighted-F1 : B.9875

2
Predicted Labels

Fig. 7. Binary and Multiclass classification confusion (a) UMAP-HHO+PCA-CNN+BILSTM (b)

matrix. PCA-HHO+PSO-CNN+BIiLSTM
Fig. 9. Classification Report for Binary and Multiclass
N — . —] Classication
. r FPR, FNR, FDR Comparison Across Models for Binary classification
- PR
- FNR
- FDR
;;“ 020
015
8
&
Fig. 8. ROC Curve of UMAP-HHO+PSO-CNN-BIiLSTM
and PSO HHO+PSO-CNN-BiLSTM Multiclass 1
classification
o.co s 3 + i 3 =
Classification Reportof UMAP-HHO+PSO-CNN+BiLSTM: e . T el O oo pkRorss
precision recall fl-score  support
FPR, FNR, FDR Comparison Across Models for Multiclass Classification
dos 8.99 09.99 0.99 18677 05 8- IPA
. - R
normal 0.99 0.96 0.98 15411 —i— FOR
probe 8.93 0.98 @.96 2816
r2l 0.65 .97 2.78 750 o
u2r 9.45 09.42 @.43 50
0.3
accuracy 8.97 29704 é
macro avg .80 06.87 0.83 29704 s
weighted avg 0.98 8.97 @.97 29704
01
Overall F1 Metrics: \—/\‘*‘
Macro-F1 : 8.8278 00
Micro-F1 1 8.9737 A0 =) HHO HHO+PSO UMAP-HHO+PSO PCA-HHO +PSO

Models

Weighted-F1 : 9.9750 . n . . n .
(a) Binary classification (b) Multiclass Classification

Fig. 10. Compares FPR, FNR, and FDR Across Six
Models.

Table 5: Comparative study
Study | Model Accuracy Precision Recall F1-Score

Binary | MC Binary | MC Binary | MC Binary | MC
[18] CNN-LSTM-SA | 89.38 |93.72 |87.12 |91.84 |95.63 |95.02 |91.17 93.26

[6] ILSTM 91.31 |93.09 |94.76 |9586 |84.93 |88.88 |89.36 91.72
[10] DNN 9331 |[86.79 |92.88 |89.46 |- - 94.21 87.56
[7] DBN-HHO 98.5 97.9 97.6 98.3
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Study | Model Accuracy Precision Recall F1-Score
Binary | MC Binary | MC Binary | MC Binary | MC
Our UMAP-HHO+PC
Model | A-CNN+BILSTM 98.46 |97.37 |98.67 [80.25 |98.13 |86.52 |98.40 82.70
PCA-HHO+PCO-
CNN+BILSTM 99.08 [98.71 |99.12 |90.16 |98.97 |94.13 |99.05 91.88

The findings forecast the potential that the usage of
state-of-the-art machine learning methods holds to develop
strong and efficient Intrusion Detection Systems for WSNS.
The research findings supplement the current effort to
improve security in environments that are constrained with
resources.

Future enhancements of this framework can be explored in
several directions, such as 1. Implement a framework for
real-time intrusion detection on energy-limited sensor nodes
using model compression and lightweight deep-learning
models. 2. Adaptive feature selection mechanisms change
feature subsets depending on the network conditions or
features of attacks. 3. This needs to be examined using a
variety of datasets (such as UNSW-NB15 and CICIDS2017)
to ensure that its features are stable and move in various
network contexts.
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